

Mariana Gama KU Leuven

Emad Heydari Beni KU Leuven Nokia Bell Labs Emmanuela Orsini Uni. Bocconi Nigel Smart KU Leuven Zama

Oliver Zajonc KU Leuven

MPC with Delayed Parties Over Star-Like Networks

The protocol

- Based on Shamir Secret Sharing
- Multiplication with 1-round Damgård-Nielsen protocol (using broadcast messages)
- Active security through circuit compilation as in Genkin et al. [GIP+14] (must be passively secure up to additive attacks)
- Fast parties don't need to wait for delayed parties (in the strong honest majority case)

The adversary

- Can corrupt up to t < n/2 parties (static corruption)
- Can corrupt all but one relay
- Can delay an arbitrary number of parties for up to δ rounds

Relay Interface

p2p messages

From party i to party j.

Commands:

Send: stores encrypted message to party j, round $k_{i,j}$ **Request**: retrieves message from i to j, round $k_{i,j}$ **Erase**: erases message from i to j, round $k_{i,j}$

Relay maintains:

- Pairwise message counter $k_{i,i}$
- Pairwise deleting counter $d_{i,j}$

Broadcast messages

From party *i* to all other parties.

Commands:

SendToAll: stores plaintext message to all parties, round k^{all} **RequestFromAll**: retrieves all messages for round k^{all} **EraseAll**: erases all messages for round k^{all}

Relay maintains:

- Global message counter k^{all}
- Global deleting counter d^{all}

Cheap in a relay based network!

3 parties:

At most 1 corruption

6 parties:

- At most 1 corruption
- 3 slow parties, 3 fast parties

Faster parties: ~270k multiplications/s

