
Mariana Gama 
KU Leuven

MPC With Delayed Parties Over
Star-Like Networks

Emad Heydari Beni 
KU Leuven 
Nokia Bell Labs

Emmanuela Orsini 
Uni. Bocconi

Nigel Smart 
KU Leuven 
Zama

Oliver Zajonc 
KU Leuven 

Multiparty Computation

x1

x2

x3

x4

• Technique for computing over encrypted data.

• Achieves privacy by distributing the computation.

Multiparty Computation

x1

x2

x3

x4

• Technique for computing over encrypted data.

• Achieves privacy by distributing the computation.

Adversary corrupting a percentage of the parties
will still learn nothing but the output,

y = f(x1, x2, x3, x4)

Multiparty Computation

Common assumptions

• Communication channels are direct and fast. 

Multiparty Computation

Common assumptions

• Communication channels are direct and fast. 

• Parties stay online during the whole computation.

Multiparty Computation

Common assumptions

• Communication channels are direct and fast. 

• Parties stay online during the whole computation.

Not the case in currently deployed systems!

This work

This work

Relay 1 Relay 2

This work

Star-like communication
topology with relay nodes

Relay 1 Relay 2

This work

Relay 1 Relay 2

Star-like communication
topology with relay nodes

Parties’ actions can be
delayed for up to rounds.δ

This work

Relay 1 Relay 2

Star-like communication
topology with relay nodes

Parties’ actions can be
delayed for up to rounds.δ

Related work

Related work
Star-like topology 

R1 R2

White-City: A framework for massive mpc with partial
synchrony and partially authenticated channels

ZenGo technical report, 2020

• Relays maintain consistency via a
consensus protocol.

• Designed for threshold ECDSA
signing -> no mechanism to limit the
number of stored messages.

Related work
Star-like topology 

R1 R2

White-City: A framework for massive mpc with partial
synchrony and partially authenticated channels

ZenGo technical report, 2020

MPC with delays
Generalized pseudorandom secret sharing and
efficient straggler-resilient secure computation

Benhamouda et al. [BBG+21]

• Relays maintain consistency via a
consensus protocol.

• Designed for threshold ECDSA
signing -> no mechanism to limit the
number of stored messages.

• Delays are caused by network
channels instead of node failures

• Multiplication protocol introduces
additional overhead.

Related work
Star-like topology 

R1 R2

White-City: A framework for massive mpc with partial
synchrony and partially authenticated channels

ZenGo technical report, 2020

MPC with delays
Generalized pseudorandom secret sharing and
efficient straggler-resilient secure computation

Benhamouda et al. [BBG+21]

Dynamic participation
Phoenix: Secure computation in an unstable
network with dropouts and comebacks

I. Damgård, D. Escudero, A. Polychroniadou, 2021

• Relays maintain consistency via a
consensus protocol.

• Designed for threshold ECDSA
signing -> no mechanism to limit the
number of stored messages.

• Delays are caused by network
channels instead of node failures

• Multiplication protocol introduces
additional overhead.

• Parties who dropout are not assumed
to receive messages sent while they
were offline.

• Requires a certain number of parties
to be online from one round to the
next one.

Multiparty Computation

Sharing a secret:

• Sample degree polynomial such that .

• Evaluate at public points.

• Give to party .

t p(0) = s
p(x) n

p(i) = si i

Shamir secret sharing

s

1 2 3 4

s1 s2 s3 s4

Reconstructing a secret:

• Parties reveal their shares and reconstruct the
polynomial.

Multiparty Computation

Sharing a secret:

• Sample degree polynomial such that .

• Evaluate at public points.

• Give to party .

t p(0) = s
p(x) n

p(i) = si i

Shamir secret sharing

s

1 2 3 4

Reconstructing a secret:

• Parties reveal their shares and reconstruct the
polynomial.

Can have at most corrupt parties!

Honest majority:

Strong honest majority:

t

n ≥ 2t + 1

n > 2t + 1

s1 s2 s3 s4

Multiparty Computation

Sharing a secret:

• Sample degree polynomial such that .

• Evaluate at public points.

• Give to party .

t p(0) = s
p(x) n

p(i) = si i

Shamir secret sharing

s

1 2 3 4

Reconstructing a secret:

• Parties reveal their shares and reconstruct the
polynomial.

Can have at most corrupt parties!

Honest majority:

Strong honest majority:

t

n ≥ 2t + 1

n > 2t + 1

s1 s2 s3 s4

Multiparty Computation

Sharing a secret:

• Sample degree polynomial such that .

• Evaluate at public points.

• Give to party .

t p(0) = s
p(x) n

p(i) = si i

Shamir secret sharing

s

1 2 3 4

Reconstructing a secret:

• Parties reveal their shares and reconstruct the
polynomial.

Can have at most corrupt parties!

Honest majority:

Strong honest majority:

t

n ≥ 2t + 1

n > 2t + 1

s1 s2 s3 s4

The relays

p2p messages
 

Broadcast messages

The relays: p2p messages

Relay 1 Relay 2

Party i

Party j

The relays: p2p messages

Relay 1 Relay 2

Party i

Party j

Assume previously
exchanged pairwise keys

The relays: p2p messages

Relay 1 Relay 2

Party i

Party j

Message

To party

In round

m
j
k

Assume previously
exchanged pairwise keys

The relays: p2p messages

Relay 1 Relay 2

Party i

Party j

Message

To party

In round

m
j
k

Enc()ci,j,k = m

Assume previously
exchanged pairwise keys

Relay 1 Relay 2

Party i

Party j

Message

To party

In round

m
j
k Send ci,j,k

Send ci,j,k

The relays: p2p messages

Enc()ci,j,k = m

Assume previously
exchanged pairwise keys

Relay 1 Relay 2

Party i

Party j

Message

To party

In round

m
j
k

ci,j,k ci,j,k

Send ci,j,k
Send ci,j,k

The relays: p2p messages

Enc()ci,j,k = m

Assume previously
exchanged pairwise keys

Relay 1 Relay 2

Party i

Party j

ci,j,k ci,j,k

Request
(i, j, k)

The relays: p2p messages

Message

To party

In round

m
j
k

Request
(i, j, k)

Enc()ci,j,k = m

Assume previously
exchanged pairwise keys

Relay 1 Relay 2

Party i

Party j

ci,j,k ci,j,k

cR1
i,j,k

cR2
i,j,k

The relays: p2p messages

Message

To party

In round

m
j
k

Enc()ci,j,k = m

Assume previously
exchanged pairwise keys

Relay 1 Relay 2

Party i

Party j

ci,j,k ci,j,k

Dec()mR1 = cR1
i,j,kcR1

i,j,k

cR2
i,j,k

Dec()mR2 = cR2
i,j,k

The relays: p2p messages

Message

To party

In round

m
j
k

Enc()ci,j,k = m

Assume previously
exchanged pairwise keys

Relay 1 Relay 2

Party i

Party j

ci,j,k ci,j,k

Dec()mR1 = cR1
i,j,kcR1

i,j,k

cR2
i,j,k

Dec()mR2 = cR2
i,j,k

Accept if the decryption happens correctly
and corresponds to the same message

The relays: p2p messages

Message

To party

In round

m
j
k

Enc()ci,j,k = m

Assume previously
exchanged pairwise keys

The relays

p2p messages
 
From party to party . 
 

Commands:

Send: stores encrypted message to party , round  

Request: retrieves message from to , round  
Erase: erases message from to , round  
 

Relay maintains:

• Pairwise message counter

• Pairwise deleting counter

i j

j ki,j

i j ki,j

i j ki,j

ki,j

di,j

Broadcast messages

The relays

p2p messages
 
From party to party . 
 

Commands:

Send: stores encrypted message to party , round  

Request: retrieves message from to , round  
Erase: erases message from to , round  
 

Relay maintains:

• Pairwise message counter

• Pairwise deleting counter

i j

j ki,j

i j ki,j

i j ki,j

ki,j

di,j

Broadcast messages

From party to all other parties. 
 

Commands:

SendToAll: stores plaintext message to all parties, round  

RequestFromAll: retrieves all messages for round  

EraseAll: erases all messages for round  
 

Relay maintains:

• Global message counter

• Global deleting counter

i

kall

kall

kall

kall

dall

The adversary

R1 R2

The adversary

• Can corrupt up to parties (static corruption)t < n/2
R1 R2

The adversary

• Can corrupt up to parties (static corruption)

• Can corrupt all but one relay
t < n/2

R1 R2

The adversary

• Can corrupt up to parties (static corruption)

• Can corrupt all but one relay

• Can delay an arbitrary number of parties for up to rounds

t < n/2

δ

R1 R2

δ

The adversary

• Can corrupt up to parties (static corruption)

• Can corrupt all but one relay

• Can delay an arbitrary number of parties for up to rounds

t < n/2

δ

R1 R2

δ

We present an MPC protocol that achieves
passive security against this adversary.

Malicious security

Circuits resilient to additive attacks with
applications to secure computation. 
Genkin et al. [GIP+14]Passive security with 

additive attacks
Active security  

with abort

X

c + λc

a + λa b + λb

Malicious security

Passive security with 
additive attacks

Active security  
with abort

X

a b

c

X

Δ ⋅ a Δ ⋅ b

Δ ⋅ c

Circuits resilient to additive attacks with
applications to secure computation. 
Genkin et al. [GIP+14]

Malicious security

Passive security with 
additive attacks

Active security  
with abort

X

a b

c

X

Δ ⋅ a Δ ⋅ b

Δ ⋅ c

Circuits resilient to additive attacks with
applications to secure computation. 
Genkin et al. [GIP+14]

Progressively compute checking equation
to avoid having to store large states
(similar to FluidMPC [CGG+21])

Malicious security

Passive security with 
additive attacks

Active security  
with abort

We want to obtain an MPC protocol that is
secure up to additive attacks

X

a b

c

X

Δ ⋅ a Δ ⋅ b

Δ ⋅ c

Circuits resilient to additive attacks with
applications to secure computation. 
Genkin et al. [GIP+14]

Multiplication protocols

1. Parties locally multiplies their shares to obtain:

2. Each party distributes a degree secret sharing of among the other parties

3. Parties use their shares of the to calculate .

[v]2t = [x ⋅ y]2t = [x]t ⋅ [y]t

i t [vi]t vi

[vi]t [z]

Maurer multiplication

Calculating [z] = [x] ⋅ [y]

X

c + λ

a b

Multiplication protocols

1. Parties locally multiplies their shares to obtain:

2. Each party distributes a degree secret sharing of among the other parties

3. Parties use their shares of the to calculate .

[v]2t = [x ⋅ y]2t = [x]t ⋅ [y]t

i t [vi]t vi

[vi]t [z]

Maurer multiplication X

c + λ

a b

 is not uniquely determined for all
parties

λ

Calculating [z] = [x] ⋅ [y]

Multiplication protocols

1. Parties locally multiplies their shares to obtain:

2. Each party distributes a degree secret sharing of among the other parties

3. Parties use their shares of the to calculate .

[v]2t = [x ⋅ y]2t = [x]t ⋅ [y]t

i t [vi]t vi

[vi]t [z]

Maurer multiplication

Damgård-Nielsen multiplication

1. Use a PRSS to generate a degree and a degree sharing of the same
random value:

2. Parties locally calculate:

3. Each party sends to party 1. Party 1 reconstructs and reveals it to all

4. Parties calculate

t 2t
[r]t, [r]2t

[v]2t = [x]t ⋅ [y]t + [r]2t

i vi v

[z] = v − [r]t

X

c + λ

a b

 is not uniquely determined for all
parties

λ

Calculating [z] = [x] ⋅ [y]

Multiplication protocols

1. Parties locally multiplies their shares to obtain:

2. Each party distributes a degree secret sharing of among the other parties

3. Parties use their shares of the to calculate .

[v]2t = [x ⋅ y]2t = [x]t ⋅ [y]t

i t [vi]t vi

[vi]t [z]

Maurer multiplication

Damgård-Nielsen multiplication

1. Use a PRSS to generate a degree and a degree sharing of the same
random value:

2. Parties locally calculate:

3. Each party sends to party 1. Party 1 reconstructs and reveals it to all

4. Parties calculate

t 2t
[r]t, [r]2t

[v]2t = [x]t ⋅ [y]t + [r]2t

i vi v

[z] = v − [r]t

Double-dipping attack when

Communication-efficient unconditional MPC with
guaranteed output delivery

V. Goyal, Y. Liu, Y. Song, 2019

n > 2t + 1

X

c + λ

a b

 is not uniquely determined for all
parties

λ

Calculating [z] = [x] ⋅ [y]

Multiplication protocols

1-Round Damgård-Nielsen multiplication

1. Use a PRSS to generate a degree and a degree sharing of the same
random value:

2. Parties locally calculate:

3. Each party broadcasts . All parties locally reconstruct .

4. Parties calculate

t 2t
[r]t, [r]2t

[v]2t = [x]t ⋅ [y]t + [r]2t

i vi v

[z] = v − [r]t

Multiplication protocols

1-Round Damgård-Nielsen multiplication

1. Use a PRSS to generate a degree and a degree sharing of the same
random value:

2. Parties locally calculate:

3. Each party broadcasts . All parties locally reconstruct .

4. Parties calculate

t 2t
[r]t, [r]2t

[v]2t = [x]t ⋅ [y]t + [r]2t

i vi v

[z] = v − [r]t

Broadcast in a relay based
network is cheap!

Experimental results
Network: relays vs direct connections

Running time for sending p2p messages.

2 parties

3 relays R1 R2 R3

Sender

Receiver

Experiments:

• E0: never erase messages

• E1: erase every message after retrieval

• E100: erase in batches of 100 messages

• DP: communication without relays

• E100 with large messages

Experimental results
Network: relays vs direct connections

Running time for sending p2p messages.

Erasing messages in batches ensures
small overhead vs direct communication

without running out of memory

Experiments:

• E0: never erase messages

• E1: erase every message after retrieval

• E100: erase in batches of 100 messages

• DP: communication without relays

• E100 with large messages

2 parties

3 relays R1 R2 R3

Sender

Receiver

Experimental results
Network: relays vs direct connections

Running time for sending broadcast messages.Experiments:

• E0: never erase messages

• E1: erase every message after retrieval

• E100: erase in batches of 100 messages

• E100 with large messages

3 parties

3 relaysR1 R2 R3

Experimental results
MPC multiplications

Multiplications per second for batched multiplications
3 parties:
• At most 1 corruption R1 R2 R3

R1 R2

6 parties:
• At most 1 corruption

• 3 slow parties, 3 fast parties

Experimental results
MPC multiplications

Multiplications per second for batched multiplications
3 parties:
• At most 1 corruption R1 R2 R3

R1 R2

6 parties:
• At most 1 corruption

• 3 slow parties, 3 fast parties

Faster parties: 
~ 270k multiplications/s

Main takeaways

1. New MPC protocol addressing major constraints of deployed systems.

• Star-like communication topology using relays

• Secure even in the presence of delayed parties  

2. Discussion on multiplication protocols with relays and delays 

3. Implementation and experimental evaluation of the effect of relays.

Main takeaways

1. New MPC protocol addressing major constraints of deployed systems.

• Star-like communication topology using relays

• Secure even in the presence of delayed parties  

2. Discussion on multiplication protocols with relays and delays 

3. Implementation and experimental evaluation of the effect of relays.

Also in the paper:
• Key agreement

• Modelling the state size of relays

• Optimisation ideas for communication and round complexity

