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• Technique for computing over encrypted data.


• Achieves privacy by distributing the computation.

Adversary corrupting a percentage of the parties 
will still learn nothing but the output,


y = f(x1, x2, x3, x4)
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efficient straggler-resilient secure computation
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Dynamic participation
Phoenix: Secure computation in an unstable 
network with dropouts and comebacks

I. Damgård, D. Escudero, A. Polychroniadou, 2021

• Relays maintain consistency via a 
consensus protocol.


• Designed for threshold ECDSA 
signing -> no mechanism to limit the 
number of stored messages.

• Delays are caused by network 
channels instead of node failures


• Multiplication protocol introduces 
additional overhead.

• Parties who dropout are not assumed 
to receive messages sent while they 
were offline.


• Requires a certain number of parties 
to be online from one round to the 
next one.
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The relays

p2p messages 
 
From party  to party . 
 

Commands:


Send: stores encrypted message to party , round   

Request: retrieves message from  to , round  
Erase: erases message from  to , round  
 

Relay maintains:


• Pairwise message counter 


• Pairwise deleting counter 

i j

j ki,j

i j ki,j

i j ki,j

ki,j

di,j

Broadcast messages 

From party  to all other parties. 
 

Commands:


SendToAll: stores plaintext message to all parties, round   

RequestFromAll: retrieves all messages for round  

EraseAll: erases all messages for round   
 

Relay maintains:


• Global message counter  


• Global deleting counter 

i

kall

kall

kall

kall

dall
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• Can corrupt up to  parties (static corruption)


• Can corrupt all but one relay


• Can delay an arbitrary number of parties for up to  rounds

t < n/2

δ

R1 R2

δ

We present an MPC protocol that achieves 
passive security against this adversary.
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Malicious security

Passive security with 
additive attacks

Active security  
with abort

We want to obtain an MPC protocol that is 
secure up to additive attacks

X

a b

c

X

Δ ⋅ a Δ ⋅ b

Δ ⋅ c

Circuits resilient to additive attacks with 
applications to secure computation. 
Genkin et al. [GIP+14]
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2. Parties locally calculate: 


3. Each party  sends  to party 1. Party 1 reconstructs  and reveals it to all


4. Parties calculate  

t 2t
[r]t, [r]2t

[v]2t = [x]t ⋅ [y]t + [r]2t

i vi v

[z] = v − [r]t

Double-dipping attack when 


Communication-efficient unconditional MPC with 
guaranteed output delivery

V. Goyal, Y. Liu, Y. Song, 2019

n > 2t + 1
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Multiplication protocols

1-Round Damgård-Nielsen multiplication

1. Use a PRSS to generate a degree  and a degree  sharing of the same 
random value: 


2. Parties locally calculate: 


3. Each party  broadcasts  . All parties locally reconstruct .


4. Parties calculate  

t 2t
[r]t, [r]2t

[v]2t = [x]t ⋅ [y]t + [r]2t

i vi v

[z] = v − [r]t

Broadcast in a relay based 
network is cheap!
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Running time for sending broadcast messages.Experiments:
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• E1: erase every message after retrieval
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• E100 with large messages
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Multiplications per second for batched multiplications
3 parties: 
• At most 1 corruption R1 R2 R3

R1 R2

6 parties: 
• At most 1 corruption

• 3 slow parties, 3 fast parties

Faster parties: 
~ 270k multiplications/s 
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Also in the paper: 
• Key agreement

• Modelling the state size of relays

• Optimisation ideas for communication and round complexity



